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Dotera [1] used a step potential and gained quasicrystal phases in a colloidial system. In this
project this configuration was also simulated, analysed and finally the potential was equipped with
a second step. The aimed structure of this additional step was the Penrose tiling, which was used
to model the distance configuration of the double-step system. In the second part of the project the
DLVO potential configuration, which was used by Sandbrink [2] was tried to rebuild.

1. INTRODUCTION

Quasicrystals form an astonishing category of materi-
als, with their structure following a well defined law of
arrangement without any finite iterations with respect to
its centre of rotational symmetry.
As this phenomena is already observed in many systems,
the question about the reproducibility arises. In order
to investigate the reproducibility, an analysis of the in-
volved systemproperties and environment parameters is
necessary.
A Monte Carlo algorithm of a certain many particle sys-
tem as well as an algorithm for an automatic analysis
of the tiling angles of the resulting particle distributions
was developed in this work.
The analysed system configurations are mainly based on
two publications. The first one is the Ph.D. thesis of
Matthias Sandbrink [2], and the second one is the pub-
lication by Dotera et.al. [1], which differ by the used
interaction potential (see Section 2.2).

2. SYSTEM PROPERTIES

The referenced many particle system represents a two-
dimensional collodial NV T -ensemble.

2.1. Symmetry & Tiling Structure

The main quasicrystalline structures, considered in
this work are tenfold and twelvefold symmetries. The
twelvefold symmetry has a common divisor angle of
δ = 30◦, which is connected to square or equilateral tri-
angle1 tiles. The basic configuration of these two tiles for
a twelvefold symmetry is given in Figure 1b, whereas a
larger quasicrystal grid containing it is shown in [2, Fig.
7.9c].
The most common example of tenfold symmetry is the
Penrose tiling, which is shown in Figure 1d. It contains

1 In the following the particle structure forming equilateral trian-
gles is just denoted as triangular tiling.

(a) Archimedean Tiling of
type 33.22

(b) Basic twelvefold
structure

(c) Classical twofold
symmetry tiling using
the Rhombs of the
Penrose tiling.

(d) Penrose tiling with
tenfold symmetry.

Figure 1: Exemplary tiling structures.

two types of rhombs, one with the long diagonal divided
by the side length being equal to the golden ratio Φ2 to
the side length and one with the short diagonal divided
by the side length equal to 1/Φ.
As it will be discussed in detail in the following Section,
only radial symmetric potentials are used in this project.
Thus, all tiling structures are directly related to certain
lengths encoded in the interaction potential.
For both of these structures/tilings, the contained tiles
can be rearranged to a classical symmetry. The square
and equilateral triangles are also part of the Archimead-
ean tiling, shown in Figure 1a. The way to rearrange
the rhombs of the Penrose tiling is shown in Figure 1c.
Therefore the environment parameters are of great im-
portance for the system to create the quasicrystaline

2 Φ states the value of the golden ratio, which is: Φ = 1+
√
5

2
≈

1.618



2

structures, in addition to the interaction potential, to
force certain angles and distance relations.

2.2. Colloid Interaction

The behaviour of the particles under certain environ-
mental conditions is caused by the particle interaction.
In this work the shoulder potential from Dotera et al. [1]
and the DLVO potential from Sandbrink [2] was used. As
the shoulder potential is not very similar to a real system
configuration, it has major advantages in doing analysis
and by encoding the length scale.
In principle, the single-shoulder potential has already two
encoded lengths. It is given by

V (r) =


∞ r < σC

ε σC < r < λσC

0 r > λ rC

, (1)

where σC is the colloid particle diameter and λ is the
length ratio compared to σC. The first length is the par-
ticle diameter itself, as the particles are hard and can-
not intersect. The second is given through the shoulder
extent, which is e.g. λ = 1.4 for the HD12 configura-
tion. Thus, for this HD12 configuration it is expected
to form square-shaped tiling for sufficient low density.
For the LD10 configuration it is expected to switch to
a common-divisor angle δ = 36◦, which is necessary for
tenfold symmetry.
The publication data and the performed density scans
during this project are not very promising with respect
to the aimed structures (see Section 5.2). Therefore,
this single-shoulder potential was equipped with a sec-
ond shoulder step, meaning

V (r) =


∞ r < σC

ε σC < r < λ1 σC

ε̃ λ1 σC < r < λ2 σC

0 r > λ2 rC

, (2)

where λ1 < λ2.
The second kind of potential is a DLVO3 potential, which
was also used by Sandbrink [2] (and Vogel [3]). This
DLVO potential reproduces the interaction of a real col-
loid, including Born repulsion, Van-der-Waals attraction
and electro static repulsion. The form and notation was
adapted from Sandbrink, as this is the reference, which
was focused on. It is composed as

VDLVO = VYk + VAO (3)

where VYK represents the Yukawa-Potential, which de-
scribes the contribution of the electro static repulsion

3 Named after Derjaguin, Landau, Verwey and Overbeck (see [2]).

part including screening effects. It is given by

VYk =

{
εσc

r exp [−κ(r − σc)] , r > σc
∞ , r < σc

, (4)

where κ is the inverse Debye screenling length.
The other contributing effects, i.e. the potential describ-
ing these is written as

VAO = −Γ
κσc(1 + q)2

exp [−κσc]

[
1 −

3r

2(1 + q)σc
+

1

2

(
r

(1 + q)σc

)3
]
,

(5)

where q is the ratio between colloid and polymer particle
radius, meaning

q =
σC
σP

. (6)

The parameter Γ describes the ratio between attractive
and repulsive contribution to the overall potential VDLVO

[2]. In Figure 2 the functionality of the DLVO-Potential
is given within a parameter scan for q with fixed Γ and
vice versa.

3. SIMULATION

The Monte Carlo simulation was implemented using a
standard metropolis algorithm for a many particle sys-
tem. The number of Monte Carlo steps is denoted as n.
With respect to the simulation setup, the used environ-
ment parameters are defined as relative variables. The
temperature T is given via the parameter

Θ =
kBT

ε
, (7)

where kB is the Boltzman constant and ε states the order
of magnitude of the used potential. It was determined
with respect to a certain potential as

ε := max{r > σC : V (r)} . (8)

The density is defined as the area fraction covered by the
particles, which is

ρ =
AparticleN

ABox
. (9)

For the simulations using the DLVO potential, the den-
sity is given by

η =
4ρ

π

(
1 + q−1

)2
, (10)

for a better comparability to the results of Sandbrink [2].
The elapsed system time τ is defined as

τ =
N

n
, (11)

which is basically the number of monte-carlo steps per
particle.
The general proceeding for a simulation run was, scaning
over the density ρ with the other parameters being fixed.
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(a) Γ-parameter scan for fixed q = 0.17 and κσc = 0.9.
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(b) q-factor scan for fixed Γ = 1.61 and κσc = 0.9.

Figure 2: DLVO-potential-plot where the red zone shows
the overleap of the colloid particles.

3.1. Simulation Box Properties

The shape of the box is not a trivial aspect, as it was
investigated by Sandbrink [2, ch. 3]. Within the scope of
the project, this aspect was not focused on in detail, but
should not be neglected completely. In the simulation,
the shape of the box is a rectangle with adjustable aspect
ratio. Therefore, each configuration is simulated using
two different aspect ratios, in order to get an idea of the
stability of the result or possible deviations. These are a
ratio of 1 (quadratic box) and one with an aspect ratio
of the golden ratio Φ. The boundaries of the box are
simulated as periodic boundaries. The dimension of the
box was chosen related to the amount of particles, which
was aimed to be around N ≈ 800.

3.2. Initial Particle Placement

It is very likely, that the system provides multiple lo-
cal minima with respect to the system energy. Thus, the

initial placement of the particles plays an important role
in which minimum the system will terminate at equilib-
rium.
A distribution of randomly placed particles is likely the
most intuitive initial configuration, because it has no pre-
ferred tiling. Thus, this random particle arrangement is
the main one used and is tested for each system configu-
ration.
It gets very complex to place the particles completely ran-
dom without causing overlaps at high densitys. There-
fore, the positions are not checked for overlaps while plac-
ing them. For solving this violation of the constraint of
hard particles, a ”curing” process is introduced. Techni-
cally this is realized by modifing the input potential V (r)
to

Ṽ (r) =


V (σC)− c n (σC − r), r < σC ∧ n ≤ 104

∞, r < σC ∧ n > 104

V (r), r > σC

.

(12)
In general, V (r) should be infinity for r < σC, in order
to reject a MC step when it comes to an overlap. With
the modified potential, the slope of the edge at r = σC is
increasing with n, which is called ”curing” here.
In order to test the stability, specific tilings are also used
as initial arrangement. This is done if a certain geometry
is expected for a certain configuration, e.g. Penrose tiling
or square tiling.

4. ANALYSIS

The analysis part requires an algorithm to categorise
a given particle distribution regarding its tiling. This is
done via the ocurring angles between the connection lines
to the neighbours of every particle. To determine these,
the following algortihm is applied on the results:

1. The unit cell tiling for a given particle distribution
is determined using the Voronoi algorithm.

2. The unit cells are investigated for geometric degen-
eracies. These turn out to unit cell angles, which
are not well distinct, but flattend by an additional
short edge. Therefore all edges of the unit cells
with a length less than rC are removed.

3. The angles between the center of the unit cell
and two neighbouring points, which span connected
edges of the unit cells are calculated (see Figure 3).

(4.) Based on the angle distribution, the number of tiles
for each identifiable type is calculated.

The developed analysis implementation displays the re-
sults of steps 1-3 as an angle histogram.
For verifying the simulation implementation and the
analysis procedure, it was first tested on configurations of
previously well known systems. These two configurations
are HD12 and LD10 of Dotera [1], of which the results can
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ϕ

Figure 3: Unit cell (blue) for a regular threefold tiling. The
angle ϕ is spanned by connection lines (green) to
the neighbouring points. These are perpendicular
to connected ridges of the unit cell.

(a) HD12 Particle
distribution.

(b) LD10 Particle
distribution.

(c) HD12 Angle distribution.

(d) LD10 Angle distribution.

Figure 4: Simulated configuration HD12 according to the
descriptions of Dotera et al. [1] with randomly
placed particles after τ = 4.5× 105. As it is
expected, the peaks are at multiples of the
common divisor angle (δHD12 = π

6
and

δLD10 = π
5

).

be seen in Figure 4. The results show for a specific tiling,
the angles condensate at the multiplices of the common
divisor angle δ. Therefore, the fourth step of the algo-
rithm is done by fitting a predefined angle distribution
function to the histogram. If this step is applied in the
following, the angle distribution function is composed of
multiple Gaussians, meaning

f(ϕ) =
∑
k=1

Ak exp

(
− ϕ2

k

2σk

)
. (13)

The area within the FWHM of a single Gaussian over the
bin width gives the number of edges with angle ϕk.
In scope of this project, no particles where tracked while
the Monte Carlo steps are applied. Thus, there is no
differentiation between fluid and unordered solid phases.
In following these are denoted as fluid and are identified
in the angle-density profile by missing significant peaks
at certain angle values.

5. RESULTS & DISCUSSION

5.1. DLVO Potential

The first system, which was analysed using the speci-
fied algorithm in the previous Section, is the configura-
tions used by Sandbrink [2] based on the DLVO poten-
tial. As there is an expected result from his Ph.D. thesis
available, this can be used as starting point regarding the
parameter configuration4 for η,Γ, κσc, εβ and q.
Figure 5a shows an overview of the tiling structures to
expect at Γ = 1.61 and q = 0.17. The results for a den-
sity scan at εβ = 80 are shown in Figure 5b and 5c These
results just show a triangular tiling in the solid phase as
the dominant angle in the whole structure is at π

3 . This
behaviour might be caused by the potential functional-
ity shown in Figure 2, which is repulsive over all particle
distances for Γ = 1.61 and q = 0.17.
It is very complex to estimate a certain tiling for this pure
repulsive potential configuration, as there is no obvious
length-scale existing. So the accordance to the tiling-
structure map in Figure 5a could not be verified. In Fig-
ure 12 the resulting tilings are shown, which the angle-
density profile in Figure 5b is based on. There, most of
the occuring structures can be identified with triangles.
After detailed investigation of the software implementa-
tion and parameter interpretation no major error was
found.
Therefore, it was tried to scan the parameters Γ and q
at some fixed configuration, where no triangular tiling
is expected. The chosen configuration is βε = 80 and
η = 1.3, which should produce a fourfold tiling accord-
ing to Figure 5a. Due to limited computation time not

4 For this system the notation differs from the definition in Equa-
tion (7), where it is denoted as βε = Θ−1.
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(a) Expected tiling structures over the system
temperature and density η according to
Sandbrink. Figure taken from [2].
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(b) Angluar distribution for βε = 80 and initialized
with random placed particles.
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(c) Angluar distribution for βε = 80 and initialized with
a rectangular tiling.

Figure 5: Results for the DLVO potential

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Angle [rad]

2.0

2.5

3.0

3.5

4.0

100

101

102

(a) Γ scan
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Figure 6: Parameter q,Γ scan for the DLVO systems for
configuration used by Sandbrink [2]

the whole plane spanned by the parameters Γ, q was
scanned. Instead, only one parameter was varied where
the other one was fixed at the initial configuration value
(Γ = 1.61, q = 0.17). The limits of the scan were chosen
with respect to the physical properties of a real system,
which limits the maximum size of the substrate particles
and the attraction-repulsion ratio. These ranges were
chosen as

q ∈ [0.17, 0.4] (14)

and

Γ ∈ [1.61, 4] . (15)

The results of the scans are shown in Figure 6. In the
distribution resulting from the Γ scan (see Figure 6a) no
dominant peak appears at a certain angle value. For the
q scan (see Figure 6b) such a peak appears for q > 0.32,
which is at π

3 and indicates threefold symmetry. Due
to the limited project time this system was not further
investigated.
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5.2. Single-Step Potential

The second kind of potential, which was studied is the
single-step potential (see Equation (1) ), which was used
by Dotera et al. [1]. The considered configurations are
HD12 and LD10, which were scanned over a density range
of ρ ∈ [0.1, 0.9]. There are two points of interest for re-
building this system, which are the general reproduca-
bility and the accordance of the angle-density profile to
the expected crystal phases, which are shown in Figure
7. The resulting angle-density profiles of the done simu-

Figure 7: Expected tiling structures over the parameter λ
and density ρ according to Dotera et al. [1].
Figure taken from [1, Fig. 1d].

lations are shown in Figure 8. Comparing the profiles of
each configuration with respect to the used box aspect
ratios, there are obviously no major differences (see Ap-
pendix - Figure 16).
The HD12 configuration has a λ = 1.4, which is gives the
side-diagonal ratio of a square. Thus, it is expected to
gain a certain fraction of square tiles using this config-
uration. Based on the applied angle analysis the angle-
density profile (see Figure 9a) indicates square tiles be-
tween ρ ∈ [0.68, 0.8], which can be seen through the ridge
at π

2 . In Figure 10 the HD12 angle-density profile is con-
verted to a corresponding number of square and equilat-
eral triangle tiles. The figure shows also the densities for
different ideal structures, which can be formed by a sys-
tem with a common divisor angle of δ = π

3 , e.g. pure
equilateral triangular, square, Archemedean and twelve-
fold tiling.
In this representation it can be seen, that the number
of triangular tiles dominates the density range where the
densities of square, twelvefold and Archimedean tiling
are located at. The number of triangles drops attending
lower densities at ρ ∈ [0.7, 0.75], which does not result in
a significant increase of square tiles. An exemplary tiling
result within the density range ρ ∈ [0.68, 0.8] is given
in Figure 9a. The gathered structure has apparently no
long-range order, just local patches of triangle and square
tiling.

A very similar behaviour was observed for the LD10
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(a) HD12, box size (60, 60)
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(b) LD10, box size (60, 60)

Figure 8: Angle-density profile for an angular scan of the
configurations LD10 and HD12, defined by
Dotera et al. [1]. The results are shown for the
squared aspect ratio of the system container.
The results for both aspect ratios of the system
container are given in the Appendix in Figure 16.

configuration, which flips to the quasicrystalline phase
indicated by a common divisor angle of δ = π

5 roughly in
ρ ∈ [0.45, 0.57]. The exemplary tiling for this quasicrys-
tal phase of the LD10 configuration is given in Figure
9b at ρ = 0.52. Even though the particles form a struc-
ture with the aimed common divisor angle, the dominant
patterns are particle chains rather than certain repeti-
tive tiles forming a global structure. Around ρ = 0.3 the
LD10 configuration flips again to a triangular structure,
which can be explained by the estimation of Equation
(18). At lower densities the well defined peaks in the
angle-density profile start to disappear for both systems
and the configurations show a transition over to the fluid
phase. The flip occuring at a lower density than for HD12
can be explained by the higher inner pressure, which is
caused by the higher step distance coverage.
These oberservations agree with the results of Dotera [1]
comparing it to Figure 7.
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(a) HD12, ρ = 0.76

(b) LD10, ρ = 0.52

Figure 9: Resulting tiling structurs of LD10 and HD12 at
in the indicated quasicrystalline phase by the
angular-density profile. (Exemplary tilings for all
phases are given in Appendix Figure 13 and 14.)

5.3. Double-Step Potential

The idea of using a second step in the potential is in-
duced by the results of the single-step potential, where
the structures a not very distinct. Also the density range
for the needed properties forming desired structures is
not very broad. Furthermore, in order to form a Penrose
tiling, which is shown in Figure 1d, a third length-scale
has to be encoded to the potential.
The two rhombe types of the Penrose tiling have the
golden ratio and the golden ratio squared as their specific
lengths (besides the minimal particle distance), which
have to be encoded into the potential by setting the λ1,2

parameters to

λ1 = Φ (16)

λ2 = Φ2 . (17)
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Figure 10: Number of equilateral triangle and square tiles
compared to the total particle number and the
density of different tiling structures. The
vertical lines show these densities for: the
Archemedean tiling 33.22 (see Figure 1a)
(grey), the twelvefold patch (see Figure 1b)
(turquoise), the square tiling (violet), the
triangular tiling with side length a = λ (orange)
and the square tiling with side length a = λ
(red). The squares on the Archemedean density
line (grey) show the expected amount of
triangles and squares for that distribution.

As this double-step potential system is not based on pre-
vious analysis results, no expected tiling behaviour with
respect to the density ρ of the colloid is given. A per-
fect Penrose tiling has a density of ρPenrose = 0.8 and
particles forming decagons with side length of σc have a
density of ρDecagon = 0.51. Other expectations regarding
the tiling behaviour can be derived from the potential.
The maximal density for 〈r〉 > λ1 and 〈r〉 > λ2 is given
by

ρ̃1 =
ρ∆

λ2
1

=
0.91

Φ2
= 0.347 and (18)

ρ̃2 =
ρ∆

λ2
2

=
0.91

Φ4
= 0.133 , (19)

where ρ∆ is the density for a triangular tiling. The pa-
rameters Θ, ρ and the ratio ε1/ε2 (where ε1 = 1) are the
(remaining) free parameters. As this potential is very
close to the LD10 configuration [1], the temperature pa-
rameter was applied with

Θ = 0.133 (20)

For each run the density was varied between ρ ∈ [0.1, 0.9],
where the values for the ratio ε1/ε2 were in

ε1/ε2 ∈ {0.1, 0.15, 0.18, 0.2, 0.25, 0.5, 0.75} . (21)

The angle-density profile for a varied density is shown
in Figure 11 for ε1/ε2 = 0.25. It turned out that this
distribution is equal for all tested values for ε1/ε2 (where
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(a) Box size (60, 60)
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(b) Box size (80, 50)

Figure 11: Angle-density profile over the particle density
for the configuration Θ = 0.133, λ1 = Φ,
λ2 = Φ2 and τ = 6.5 · 105 (and ε1/ε2 = 0.25).
The actual tilings results are exemplarily given
at six densities in the appendix in Figure 15.

ε1 < ε2).
The resulting angle-density profile can be split up into
four density regions with respect to the angular disti-
bution. In between ρ ∈ [0.6, 0.9] the threefold tiling
dominates, which is indicated by the peak at π

3 (≡ 60◦).
For descreasing density within this region a second ridge
at 2π

3 (≡ 120◦) gets evident. This ridge is caused by
hexagons in the tiling and can also be seen in the actual
structure (see Figure 15g). As the distance of the op-

posite particles in those hexagons is r > λ2, this is the
energetic most favourably structure.
The second region ρ ∈ [0.34, 0.6] is the quasicrystal
phase, the common divisor angle being δ = 36◦. Even
though, the density of the Penrose tiling is not in the den-
sity range of this phase, the density for decagons struc-
tures ρDecagon is.
The transition from the quasi-crystalic phase to the third
region is exactly where it was expected by ρ = ρ̃1, where
the particles form again a triangular phase. This phase
is located in ρ ∈ [0.25, 0.34]. The triangular tiling, be-
ing the most dense structure, is formed to gain a particle
distance r > λ1 and avoid a contribution to the system
energy of the higher potential step. The last phase is the
fluid phase ρ ∈ [0.1, 0.25], which covers a higher density
range, than it is expected. The difference of the transi-
tion point compared to ρ̃2 can be explained by the system
temperature.

6. CONCLUSION & OUTLOOK

The most promising results of this project were
achieved using the double-step potential. Even though
these results did not lead to a perfect Penrose tiling, the
gained particle distribution shows a very prominent par-
tial tenfold symmetry. It is indicated by a common divi-
sor angle of δ = π

5 in the angular distibution (see Figure
11) and can be seen very prominently in the particle dis-
tribution in Figure 15d.
The results of the density scan for the single step poten-
tial are in accordance with the results of Dotera [1]. The
results based on the DLVO potential, which were based
on the results of Sandbrink [2], could not be reproduced.
The most evident explenation are differences in the sys-
tem configuration, which were caused by As so far, the
gained results were not classified with respect to the er-
rors. In order to gain completely non-correlated results,
the simulation runs have to be redone, which requires
high computation resources. An idea to bypass this prob-
lem is, to sample the results of a single simulation-run at
different time-steps τ . As these samples are correlated,
this has to be considered for calculating these errors.
The simulation implementation can be retrieved from
https://www.github.com/8me/QuasiCrystal_MC.
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Appendix A: Simulation Run Details

Configuration Θ τ η, ρ Box size

DLVO 1.25× 10−2 105 η ∈ [1.1, 1.6] (60,60)

HD12 0.278 105 ρ ∈ [0.45, 0.9] (60,60)

HD12 0.278 105 ρ ∈ [0.45, 0.9] (80,50)

LD10 0.133 105 ρ ∈ [0.45, 0.9] (60,60)

LD10 0.133 105 ρ ∈ [0.45, 0.9] (80,50)

Double-Step 0.133 105 ρ ∈ [0.45, 0.9] (60,60)

Double-Step 0.133 105 ρ ∈ [0.45, 0.9] (80,50)

Table I: Overview of the used environmental parameters in
the simulations.
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Appendix B: Additional Figures

(a) η = 0.92 (b) η = 1.05 (c) η = 1.18

(d) η = 1.32 (e) η = 1.45 (f) η = 1.57

Figure 12: Resulting tiling structures for the DLVO configuration with square box shape.
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(a) ρ = 0.3 (Phase: Fluid) (b) ρ = 0.5 (Phase: Fluid) (c) ρ = 0.63 (Phase: QC,
Fluid)

(d) ρ = 0.71 (Phase: QC) (e) ρ = 0.76 (Phase: QC) (f) ρ = 0.83 (Phase:
Triangular)

Figure 13: Resulting tiling structures for HD12 with square box shape. For tilings at densities close to the transition
between two phases, both are declared.

(a) ρ = 0.3 (Phase:
Triangular LD)

(b) ρ = 0.36 (Phase: QC,
Triangular LD)

(c) ρ = 0.5 (Phase: QC)

(d) ρ = 0.57 (Phase:
Triangular HD, QC)

(e) ρ = 0.63 (Phase:
Triangular HD)

(f) ρ = 0.83 (Phase:
Triangular HD)

Figure 14: Resulting tiling structures for LD10 configuration with square box shape. For tilings at densities close to the
transition between two phases, both are declared.
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(a) ρ = 0.1 (Phase: Fluid) (b) ρ = 0.53 (Phase:
Triangular LD)

(c) ρ = 0.45 (Phase: QC) (d) ρ = 0.53 (Phase: QC)

(e) ρ = 0.56 (Phase: QC) (f) ρ = 0.6 (Phase:
Triangular HD, QC)

(g) ρ = 0.67 (Phase:
Triangular HD)

(h) ρ = 0.8 (Phase:
Triangular HD)

Figure 15: Resulting tiling structures for the double-step potential with square box shape. For tilings at densities close to
the transition between two phases, both are declared.
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(a) LD10, box size (60, 60)
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(b) LD10, box size (80, 50)
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(c) HD12, box size (60, 60)
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(d) HD12, box size (80, 50)

Figure 16: Angular distribution for an angular scan of the configurations LD10 and HD12, defined by Dotera et al. [1]. For
tilings at densities close to the transition between two phases, both are declared.
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